

Fig. 1. Interaction among $\mathrm{Te}_{4} \mathrm{I}_{4}$ molecules.
Mirzai, 1983). The range of $\mathrm{Te}-\mathrm{I}$ bond lengths was found in $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{TeI}_{3}$ (McCullough \& Knobler, 1976). As shown in Fig. 1, along the a axis one $\mathrm{Te}_{4} \mathrm{I}_{4}$ molecule is connected to another two molecules through the contacts $\mathrm{Te}(3) \cdots \mathrm{I}(1 a)$ and $\mathrm{Te}(3 c) \cdots \mathrm{I}(1)$ ($3.349 \AA$) and the contacts $\mathrm{Te}(3) \cdots \mathrm{I}(2 a)$ and $\mathrm{Te}(3 c) \cdots \mathrm{I}(2)(3 \cdot 407 \AA)$, forming an infinite chain. Along the b axis one $\mathrm{Te}_{4} \mathrm{I}_{4}$ molecule is connected to a further two molecules through the contacts $\mathrm{Te}(2) \cdots \mathrm{I}(1 b), \quad \mathrm{Te}(4) \cdots \mathrm{I}(2 b), \quad \mathrm{Te}(4 b) \cdots \mathrm{I}(2) \quad$ and $\mathrm{Te}(2 b) \cdots \mathrm{I}(1)$ and the contacts $\mathrm{I}(3) \cdots \mathrm{I}(1 d), \mathrm{I}(4) \cdots \mathrm{I}(2 d)$, $\mathrm{I}(2) \cdots \mathrm{I}(4 d)$ and $\mathrm{I}(1) \cdots \mathrm{I}(3 d)$, forming four infinite
linear chains $\quad[$ e.g. $\quad \cdots \mathrm{I}(1 b) \cdots \mathrm{Te}(2)-\mathrm{I}(3) \cdots \mathrm{I}(1 d) \cdots$, $\cdots \mathrm{I}(2 b) \cdots \mathrm{Te}(4)-\mathrm{I}(4) \cdots \mathrm{I}(2 d) \cdots]$ through the structure.
If the interaction between Te and I is considered significant, then the geometry around different Te atoms may be considered as two kinds of four coordination. The symmetry about the $\mathrm{Te}(1)$ and $\mathrm{Te}(3)$ atoms was found to be the cis-planar form, the square-planar form for $\mathrm{Te}(1)$ being regular ($2 \cdot 888$ $2 \cdot 921 \AA$ for two Te-Te bonds, 3.043-3.101 \AA for two $\mathrm{Te}-\mathrm{I}$ bonds), but the square-planar form for $\mathrm{Te}(3)$ is quite distorted ($2.786-2.805 \AA$ for two $\mathrm{Te}-\mathrm{Te}$ bonds, $3 \cdot 349-3.407 \AA$ for two $\mathrm{Te} \cdots$ I contacts). However, the coordination around the $\mathrm{Te}(2)$ and $\mathrm{Te}(4)$ atoms approximates a trigonal bipyramid with a vacant equatorial site: two I atoms axial, two Te atoms equatorial.

The authors would like to thank Professor John R. Helliwell and the Crystallographic Laboratory at the University of Manchester for providing the facilities needed in our structure refinements.

References

Kniep, R., Mootz, D. \& Rabenau, A. (1976). Z. Anorg. Allg. Chem. 422, 17-38.
McCullough, J. D. \& Knobler, C. (1976). Inorg. Chem. 15, 2728-2731.
McWhinnte, W. R. \& Monsef-Mirzai, Z. (1983). Proceedings of the Fourth International Conference on the Organic Chemistry of Selenium and Tellurium, edited by F. J. Berry and W. R. McWhinnie, pp. 3-31. The University of Aston in Birmingham, England.
Molecular Structure Corporation (1985). TEXSAN TEXRAY Structure Analysis Package. MSC, 3200A Research Forest Drive, The Woodlands, TX 77381, USA.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, New York: Cornell Univ. Press.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1991). C47, 2644-2646

Structure of Hexagonal Copper(I) Ferrite

By H. Effenberger
Institut für Mineralogie und Kristallographie der Universität Wien, Dr Karl Lueger-Ring 1, A-1010 Vienna, Austria

(Received 15 February 1991; accepted 11 June 1991)

Abstract. $\quad 2 H-\mathrm{CuFeO}_{2}, \quad M_{r}=151 \cdot 39, \quad$ hexagonal,
$P 6_{3} / m m c, \quad a=3 \cdot 035(1), \quad c=11 \cdot 449(3) \AA, \quad V=$
$91 \cdot 33 \AA^{3}, \quad Z=2, \quad D_{x}=5 \cdot 50 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo} K \alpha)=$
$0 \cdot 71073 \AA, \mu=18.6 \mathrm{~mm}^{-1}, F(000)=142$, room tem-
$00108-2701 / 91 / 122644-03 \$ 03.00$
perature, $R(F)=0.033$ for 173 independent reflections with $F_{o}>3 \sigma\left(F_{o}\right)$ and 9 variables. Edge sharing FeO_{6} octahedra [point symmetry $\overline{3} m, \mathrm{Fe}-\mathrm{O}=$ 2.028 (1) \AA] form brucite-like layers in (00.1) which
(C) 1991 International Union of Crystallography
are linked by linear [2] coordinated Cu atoms [point symmetry $\overline{6} m 2, \mathrm{Cu}-\mathrm{O}=1.842$ (2) \AA]. $2 \mathrm{H}-\mathrm{CuFeO}_{2}$ is a polytype of delafossite $\left(3 R-\mathrm{CuFeO}_{2}\right)$.

Experimental. $2 \mathrm{H}-\mathrm{CuFeO}_{2}$ was formed as a byproduct during syntheses of iron-copper-arsenates (Effenberger, 1988) as follows: 2 g of an equimolar mixture of $\mathrm{Na}_{2} \mathrm{HAsO}_{4}+\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{Cu}(\mathrm{OH})_{2}$ were put into a Teflon-lined stainless steel autoclave (6 ml volume), 2 ml of an aqueous solution of NaOH (30%) were added. After heating to 493 K for 3 d , crystals of $2 \mathrm{H}-\mathrm{CuFeO}_{2}$ were formed besides $\mathrm{Cu}_{2} \mathrm{O}$ (cuprite). Crystals of the title compound are idiomorphic (forms $\{10.0\}$ and $\{10.3\}$), column-shaped, opaque, brownish-black with a semi-metallic lustre.

Single crystal, $0.11 \times 0.11 \times 0.25 \mathrm{~mm}$, Stoe AED-2 four-circle diffractometer (program package STRUCSY), graphite-monochromatized Mo K α radiation, lattice parameters from 26 reflections with $38 \leq 2 \theta \leq 40^{\circ} ; 2 \theta / \omega$-scan mode, step width 1.35° increased for $\alpha_{1}-\alpha_{2}$ dispersion, 0.21° each side for background correction, scan speed 1.2 to $3.6^{\circ} \mathrm{min}^{-1}$, drift correction from three standard reflections $<1 \% ; 1514$ reflections with $7 \leq 2 \theta \leq 90^{\circ}(h:-6 \rightarrow 6$, $k:-6 \rightarrow 6, l:-22 \rightarrow 0$), 181 reflections in unique data set $\left[R_{\text {int }}\left(F^{2}\right)=0.057\right.$], absorption correction according to crystal shape (Gaussian integration: transmission factors from 0.146 to 0.264); corrections with Lorentz and polarization factors. Complex neutral atomic scattering functions from International Tables for X-ray Crystallography (1974, Vol. IV). Atomic coordinates of Cu and Fe atoms were found from a Patterson map, those of the O atom from a subsequent difference Fourier summation. Several cycles of least-squares refinements on F with anisotropic displacement parameters gave $R=0.033$ and $w R=$ $0.030, w=\left[\sigma\left(F_{o}\right)\right]^{-2}(9$ variables) for the 173 reflections with $F_{o}>3 \sigma\left(F_{o}\right) . \Delta / \sigma<10^{-3}$; max. and min. heights in a final difference Fourier map were 1.35 and $1.82 \mathrm{e} \AA^{-3}$. Extinction correction gave $g=$ $1.6(2) \times 10^{-4}$ (Zachariasen, 1967). Final atomic coordinates are given in Table 1,* selected interatomic bond distances and angles are compiled in Table 2.

Related literature. A number of $M^{1} M^{\text {III }} \mathrm{O}_{2}$ compounds form brucite-like $M^{\text {III }} \mathrm{O}_{2}$ layers piled up in a $3 R$ stacking sequence with symmetry $R \overline{3} m$ (Delaplane, Ibers, Ferraro \& Rush, 1969; Prewitt, Shannon \& Rogers, 1971; Shannon, Rogers \& Prewitt, 1971; Köhler \& Jansen, 1986; Dordor, Chaminade, Wichainchai, Marquestaut, Doumerc,

[^0]Table 1. Atomic fractional coordinates and anisotropic displacement parameters for $2 \mathrm{H}-\mathrm{CuFeO}_{2}$

$$
\mathrm{ATP}=\exp \left(-2 \pi^{2} \sum_{i j} U_{i j} \cdot 10^{-4} \cdot a_{i}^{*} a_{j}^{*}\right)
$$

For symmetry considerations $U_{11}=U_{22}=2 U_{12}$ and $U_{23}=U_{31}=0$.

	Position	x	y	z	U_{11}	U_{33}
Cu	$2(c)$	$1 / 3$	$2 / 3$	$1 / 4$	$141(2)$	$36(2)$
Fe	$2(a)$	0	0	0	$51(2)$	$64(2)$
O	$4(f)$	$1 / 3$	$2 / 3$	$0.0892(2)$	$69(4)$	$41(6)$

Table 2. Selected interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Cu}-\mathrm{O}$	$1.842(2), 2 \times$	$\mathrm{O}-\mathrm{O}$	$2.690(3) / 3.035(1)$
$\mathrm{Fe}-\mathrm{O}$	$2.028(1), 6 \times$		
$\mathrm{O}-\mathrm{Fe}-\mathrm{O}$	$83 \cdot 11(6) / 96 \cdot 89(6)$	$\mathrm{Fe}-\mathrm{O}-\mathrm{Fe}$	$96.89(9)$
$\mathrm{Cu}-\mathrm{O}-\mathrm{Fe}$	$120.22(3)$		

Pouchard, Hagenmüller \& Ammar, 1988; Lambert, 1988). A few are known to form $2 H$ polytypes with symmetry $\mathrm{Pb}_{3} / \mathrm{mmc}$ (Okamoto, Okamoto \& Ito, 1972; Ishiguro, Ishizawa, Mizutani \& Kato, 1983; Köhler \& Jansen, 1986); Stählin \& Oswald (1970) mentioned 6 H and 12 H stacking variants. The 2 H and $3 R$-type structure determined by accurate singlecrystal X-ray diffraction is known from AgFeO_{2}, $\mathrm{CuYO}_{2}, \mathrm{CuAlO}_{2}$ and now for CuFeO_{2} : for each pair the $M^{\text {III }} \mathrm{O}_{6}$ octahedra and the linear $\mathrm{O}-M^{1}-\mathrm{O}$ coordinations are equal within limits of error. The $\mathrm{Fe}-\mathrm{O}$ distances in the two AgFeO_{2} compounds are slightly enlarged as compared with $\mathrm{CuFeO}_{2} ; \mathrm{Cu}-\mathrm{O}$ distances in the CuAlO_{2} modifications are longer, those in CuYO_{2} are shorter than in CuFeO_{2}. In $2 \mathrm{H}-$ CuFeO_{2} the r.m.s. amplitudes for the Cu atom are 0.06 in $[00 \cdot 1]$ and $0.119 \AA$ in ($00 \cdot 1$); r.m.s. amplitudes of the Fe atom (0.080 and $0.072 \AA$) and those of the O atom (0.083 and $0.064 \AA$) indicate more or less balanced dislocations.

Some compounds with formula $M^{1} M^{\text {III }} \mathrm{O}_{2}$ and symmetry $R \overline{3} m$ have similar structures, but M^{1} and $M^{\text {III }}$ atoms are octahedrally coordinated (see e.g. Aleandri \& McCarley, 1988).

Syntheses were financially supported by the Hochschuljubiläumsstiftung der Stadt Wien.

References

Aleandri, L. E. \& McCarley, R. E. (1988). Inorg. Chem. 27, 1041-1044.
Delaplane, R. G., Ibers, J. A., Ferraro, J. R. \& Rush, J. J. (1969). J. Chem. Phys. 50, 1920-1927.

Dordor, P., Chaminade, J. P., Wichainchal, A., Marquestaut, E., Doumerc, J. P., Pouchard, M., Hagenmüller, P. \& Ammar, A. (1988). J. Solid State Chem. 75, 105-112.
Effenberger, H. (1988). Acta Cryst. C44, 2041-2043.
Ishiguro, T., Ishizawa, N., Mizutani, N. \& Kato, M. (1983). J. Solid State Chem. 49, 232-236.
Köhler, B. U. \& Jansen, M. (1986). Z. Anorg. Allg. Chem. 543, 73-80.

Lambert, U. (1988). Kristallchemie von $\mathrm{Cu}(\mathrm{I})$ und $\mathrm{Cu}(\mathrm{II})$ in oxidischer Bindung, Bd. 18. Heidelberger Geowiss. Abh., Heidelberg: Univ. Heidelberg.
Okamoto, S., Okamoto, S. I. \& Ito, T. (1972). Acta Cryst. B28, 1774-1777.
Prewitt, C. T., Shannon, R. D. \& Rogers, D. B. (1971). Inorg. Chem. 10, 719-723.

Shannon, R. D., Rogers, D. B. \& Prewitt, C. T. (1971). Inorg. Chem. 10, 713-718.
Stählin, W. \& Oswald, H.-R. (1970). Z. Anorg. Allg. Chem. 373, 69-72.
Stoe \& Cie (1984). STRUCSY. Structure system program package. Stoe \& Cie, Darmstadt, Germany.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1991). C47, 2646-2647

A Redetermination of the Trigonal Silver Fulminate Structure

By Doyle Britton
Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.

(Received 3 June 1991; accepted 17 July 1991)

Abstract. AgCNO, $M_{r}=149.89$, trigonal, $R \overline{3}, a=$ 9.087 (3) $\AA, \alpha=115.73$ (3) ${ }^{\circ}, V=391$ (1) $\AA^{3}, Z=6$, $D_{x}=3.82(1) \mathrm{g} \mathrm{cm}^{-3}$, Mo $K \alpha, \lambda=0.71069 \AA, \mu=$ $73.5 \mathrm{~cm}^{-1}, F(000)=408, T=297(2) \mathrm{K}, \quad R=0.036$ for 665 unique reflections with $I>\sigma(I)$.

Experimental. The compound was prepared as described by Britton \& Dunitz (1965) in the previous determination of this structure. A needle-shaped crystal $0.1 \times 0.1 \times 0.5 \mathrm{~mm}$ was used for the data collection. Data were collected on an Enraf-Nonius CAD-4 diffractometer equipped with a graphite monochromator. 21 reflections with $11<\theta<22^{\circ}$ were used to determine the cell parameters. The previously reported space group, $R \overline{3}$, was assumed to be correct. Data were collected, using ω scans, in the range $0<\theta<26^{\circ}$ for one hemisphere and in the range $26<\theta<30^{\circ}$ for the entire sphere (ranges of h, k and $l:-12$ to 12). The intensities of 3108 different reflections were measured. Three check reflections measured every 5000 s of exposure time showed a linear decay of 19% over the entire data collection; this was corrected for. Absorption corrections were made based on ψ scans; maximum correction 5.3% in intensity. Equivalent reflections were combined to give 758 independent reflections ($R_{\text {int }}=0.029$) of which 665 with $I>\sigma(I)$ were used in the calculations. The starting parameters were taken from the previous determination and were refined with fullmatrix least squares on F values, using anisotropic thermal parameters for all atoms. Refinement converged with $R=0.036, w R=0.031$ and $S=0.781 ; w$ $=1 / \sigma^{2}(F)$ was calculated from $\sigma^{2}(I)=\sigma^{2}\left(I_{C}+\right.$ $\left(0.02 I^{2}\right.$, where $\sigma(I)_{C}$ is the standard deviation in I based only on counting statistics. In the final cycle of refinement $(\Delta / \sigma)_{\text {max }}=0.01, \quad(\Delta \rho)_{\text {max }}=0.84$, and $(\Delta \rho)_{\min }=-0.99 \mathrm{e}^{\AA^{-3}}$. Atomic scattering factors and anomalous-dispersion corrections for all atoms

0108-2701/91/122646-02\$03.00

Table 1. Atomic coordinates and equivalent isotropic thermal parameters

$B_{\text {eq }}=\frac{8}{3} \pi^{2} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {cq }}\left(\AA^{2}\right)$
Ag	0.06334 (8)	0.15026 (8)	-0.20132 (8)	2.98 (2)
0	0.8771 (7)	0.7258 (7)	0.3849 (7)	3.0 (1)
N	0.6469 (8)	0.5150 (7)	0.2168 (7)	2.2 (1)
C	0.435 (1)	0.3221 (9)	0.061 (1)	2.3 (1)

Table 2. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for the orthorhombic and trigonal polymorphs of AgCNO

	Orthorhombic*	Trigonal \dagger
$\mathrm{Ag}-\mathrm{C}$	2.183 (5)	2.151 (7)
		2.177 (7)
$\mathrm{Ag}-\mathrm{O}$	2.766 (2)	2.497 (4)
		2.731 (7)
		2.845 (8)
$\mathrm{C}-\mathrm{N}$	1.159 (8)	1.153 (7)
$\mathrm{N}-\mathrm{O}$	1.251 (6)	1.258 (7)
$\mathrm{Ag}-\mathrm{Ag}$	2.902 (1)	2.819 (1)
$\begin{aligned} & \mathrm{Ag}-\mathrm{C}-\mathrm{Ag} \\ & \mathrm{Ag}-\mathrm{C}-\mathrm{N} \end{aligned}$	83.3 (2)	81.3 (3)
	138.4 (1)	139.0 (4)
		139.4 (4)
$\mathrm{C}-\mathrm{N}-\mathrm{O}$	180	179.2 (5)
$\mathrm{C}-\mathrm{Ag}-\mathrm{C}$	180	166.0 (3)
	nfield \& Giessen	

were taken from International Tables for X-ray Crystallography (1974, Vol. IV). The computer programs used were from TEXSAN (Molecular Structure Corporation, 1985). The final positional parameters are given in Table 1.* Interatomic distances and angles are given in Table 2, where they are compared with

[^1]Table 1. Atomic coordinates and equivalent isotropic

$$
4-2+2
$$

$$
B_{\mathrm{eq}}=\frac{8}{3} \pi^{2} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j} .
$$

[^0]: * A list of structure factors has been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54336 (2 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Lists of anisotropic thermal parameters and structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54469 (6 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

